
O,3
LO
qZ)
T-i

!

A

Z
I--

Z _

NASA TN D-1652

_yj _zs__

TECHNICAL NOTE

D-1652

ORBITS RETURNING FROM THE MOON TO A SPECIFIED

GEOGRAPHIC LANDING AREA

By Luigi S. Cicolani

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS

WASHINGTON

AND SPACE ADMINISTRATION

April 1963



/_ v'_ _
/



TABLE OF CONTENTS

S_@_RY .................................

INTRODUCTION ..............................

SY}_OLS .................................

ANALYSIS ................................

Method of Solution ............... ...........

Geometrical Considerations ......................

Dynamics ...............................

RESULTS A_ DISCUSSION .........................

Times of LRnding and Flight Time ...................
Entry Range Requirements ................. ......

CONCLUSIONS ...............................

£PPENDIK A - _kNDING TI_ES OF INTEREST .................

APPENDIX B - ORBITAL FLIGKT TIHE FOrmULAS ................

APPEndIX C - VARIATION OF LA}_ING TI_ WITH TIME OF DEPARTING THE HOON

FOR FIXED INCLINATION .........................

REFERENCES ...............................

FIGURES .................................

i

i

2

3

3
4
_F

i0

i0

13

16

18

20

23

26

27





NATIONALAERONAUTICSANDSPACEADMINISTRATION

TECHNICALNOTED-1652

ORBITSRETURNINGFROMTHEMOONTOA SPECIFIED

GEOGRAPHICLANDINGAREA

By Luigi S. Cicolani

SU_RY i

15 _2 "_"
.

This paper develops a method of computing approximate trajectories returning

from the Moon to a fixed landing site. The gravitational field of a spherical

Earth is assumed to govern orbital motion and the entry phase of the trajectories

is described by a linear relation between entry range and flight time in the

atmosphere.

As an example, data were computed for trajectories returning to Edwards Air
f f

Force Base during the month of February ±9oo and an analysis of %hese data is

presented.

INTRODUCTION

Return from the Moon to Earth is the last major phase of a successful manned

lunar mission. Many of the phases in the mission impose trajectory constraints;

for example, constraints that result from launch site and launch azimuth restric-

tions, boost vehicle operations; tracking considerations_ operations in the

vicinity of the Moon, lighting conditions at various points in the mission_ etc.

The return phase also imposes an important trajectory constraint that arises

from the need for control over the terrestrial landing area. One possible inter-

pretation of this control problem is to restrict operations to trajectories that

return to a fixed landing site. The literature has included substantial contri-

butions to the midcourse guidance (e.g., ref. i) and entry phases (e.g.j ref. 2)

of the return but has tended to ignore the analysis of satisfactory return tra-

jectories. The present work investigates trajectories which return from the Moon

to a fixed landing site on the Earth but are otherwise unrestricted.

A large amount of data is required to determine the effects of the many

variables in the problem so that a rapid and reasonably accurate method of find-

ing return trajectories is necessary. The method of solution described in the

text follows the general approach of references 3 and 4_ in which orbital motion

is described by the two-body approximation; that is_ multibody effects are

neglected and only the gravitational field of a spherical Earth is considered.



T]'_on_ccttrac:_of tlte solutffons obtained l)y this approximation is such that when
t!te perggee posit:ion a_udvelocity are entered in an n-body ntu_lerical integration
compttter program and integrated backwards in time to the Hoon, the trajectory
origi.nates on tP.e s_uq%ceof the Hoon.

Data were obtained with a v:'.ewto developing an understanding of the general
maid,re of ret_,n t1_ajectories and to establishing the effects of the variables in
the problem. The data presented largely concern trajectories landing at Edwards
A:ir Force Base .d__u'.i_ngFebruary 19(k;i_but are typical of other landing sites in th
So_t!,_wester_lUnited States and otl_er time periods_ and illustrate the general
nattu_e of ret'u'n trajectories.
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azimuth_ meastm-ed from local North

declination

o_'bital eccentricity

eccentric ano_ly for ellipses and hjperbolas

orbital plane incP;nation angle

tr_ncat_on function

di.stan<_e i'rom E&rth' s center

right ascension_ meas_._ed from the first point of Aries

t i me

(Ti.me is gi_ven in mean solar units. Calendar date is given in

Greenwich mean solar time unless otherwise specified.)

:flight time

time o_['landing

time of launch from the Hoon

speed

inertial coordinate frame

orbital true anomaly from vacu_mn perigee

true anomaly of entry point
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entry range angle

gravitational constant, 398613.50 kmS/sec s

in-plane angle from the nearest ascending node

geocentric angle_ Hoon to landing

equatorial angle from the nearest ascending node

equatorial angle_ Hoon to landing

conditions at landing

conditions at the Hoon

conditions at vacu_m_ perigee

vector

desired value

time derivative

ANALYSIS

Hethod of Solution

The problem is to compute those trajectories which return from a point in

the Earth-Hoon system and allow a vehicle to land at a specified site on the

Earth. The point in space is specified by its position_ R_ and the time of

departure_ T, and the landing site_ by its rigilt ascension at some reference time

and its geographic latitude.

The method of solution can be divided into two steps: First_ by choosing

the azimuth at landing it is possible to compute from geometrical considerations

the required total geocentric angle in the plane of motion from the point of

depart_m_e to the landing site_ and the required time of landing and corresponding

total flight time. Tke dynamics of the return trajectory fall into two regimes_

an orbital phase and an entry phase. The second step requires an iterative pro-

ceduaoe to find the combined entry trajectory and Keplerian orbit which match the

required flight time and geocentric angle computed from the first step. This

results in the solution orbit and the required atmosphere entry range.



Oeometrca! Considerations

Total _eocentric an_!e.- The return trajectory will be in a single plane as

a result of the assum!ption of Keplerian orbital motion. It will therefore be

useful to consider first the geometry associated with the intersection of an

orbital plane with the celestial sphere, as si_o_rn in figure I where X, Y, Z

form the usual inertial coordinate frame centered at the Earth. For any point or

this intersection the angles AZ (azimuth), D (declination), Y (equatorial angle

from the ascending node), RA (right ascension), and _ (in-plane angle from the

ascending node) are defined.

The orbital plane inclination angle, I, is the angle between the North Pole

and the normal to the o_bm_al plane; where the normal is taken in the positive

direction of orbital angular velocity. Only easterly orbits (i.e., orbital

motion from west to east with respect to the Earth) will be considered, for whic_

the inclination angle and azimuth are restricted to the ranges 0 < I _ _/2 and

O<Az <z.

Some convenient relations s_nong the angles are

cos I = cos D sin AZ

sin Y = tan D/tan I

cos Y = cos Az/sin I

cos _ = cos Y cos D

sin _ = sin D/sin I

(lal

(lb',

(lcl

(l<

(lel

The total geocentric angle can be determined after obtaining the angles

associated with two points on the orbital track. These points are to be speci-

fied by their declinations, DL (the landing site latitude) and DM (the declina-

tion of the Moon at the time of departure). The necessary relations result from

application of equations (I) first at the landing site and then at the Moon.

The free choice of one of the geometrical parameters other than DL and _4

is available; for example, entry range angle, orbital true anomaly (or orbital

energy), inclination angle, etc. The choice is a matter of convenience to the

purpose of the computations and in the present ca_e the method of solution will

be formulated with the azimuth at landing, AZL _ as the independent parameter.

This fixes the ,inclination angle through use of equation (la). Vehicles on

trajectories having the same landing azimuth will approach the landing site from

the same direction and will have nearly identical tracks over the rotating Earth

in the final phase of the return.

The orbital plane inclination and equatorial angle of the landing site are
computed from equations (i) applied at the landing site.



cos I = cos DL sin AZL
O<lS_/2

sin YL = tan DL/tan I

cos YL = cos AzL/sin I

The first of these equations_ which relates inclination at !andtng to the azimuth

angle, is plotted in figure 2(a) for landings at Edwards AFB (DL = 34.9o). In

general, the inclination angle cannot be less than the maximum required declina-

tion on the orbit, which in this case is the latitude of Edwards. The decli_.a-

tion of the Moon_ plotted in figure 2(b) for the month of February 1966, can vary

between 2°:.5° North and 2_.5 ° South over a month. A minim_m inclinati_on orbit

will have a due East heading at landing and polar orbits will refer to those with

zero landing azimuth.

(2)

The same equations are now applied at the Moon, giving:

sin AZM = cos 1/cos I_

sin YM = tan l_/tan I (3)

cos YM = cos AZM/sin I

The first equation gives two values of the heading angle at the Moon for the given

values of I and DM, and the two corresponding values of YM are obtaine(_ from

the remaining two equations. Geometrically, these t_zo sets of angles correspond

to the two points on the orbital track of figure i which have the specified lunar

declination_ D},_. The procedT_e that follows is the same for either _:et of angles.

Finally, the total geocentric angle from the ldoon to the land:ing site,

_L - {}d, can be computed from the following equation, obtained by substitutions of'

equations (2) and (3) in equations (id) and (Le).

cos A[ = cos I%d cos DL cos SY + sin DT,,Isin DL

All/= YL - YH

,!i)

To obtain the correct quach_ant for the geocentric angle, it should be noted that

sin A{ and sin _ have the same sign.

The relations among the various angles are stmtmarized in figu_'es 2(c) and

2(d), which show A_ vs. _[ for various values of z_ and landing azimuth. The

geocentric angle_ A_ is given only in the range from _ to 2_. This is the only

range of interest in the present case because of restrictions on the orbital true

anomaly and atmosphere entry range.

Times of landing and flight times.- Once the landing azimuth_ DL_ and DM are

specified_ the angles_ I_ AZM _ _, and A_ can be computed as in the preceding

section. The orbital plane can next be located inertially, since its inclination

is known and it must pass through the Moon's position at the specified time of

departure with the correct heading (fig. 3)- The required inertial direction of

the landing site at the time of landing is then located. Since the landing site



o_e:tp[os _ogiven inertial direction on :its track once each sfdereal day, t!:e

!:uuk!ng tfmes and corresponding flight times can be found.

The equator T_al s_ngle east from the Hoon at the time of departure to the

Landh_g site at the t Tme of %an_S_ng is the difference T_n right ascension of these

two TnertiaL di.rectT_ons; that i.s_

RAL - RAM = _N - YH

,Rr_,] tlze right ascensT_on of tlze landing site is

HA L = RA M + sky (5)

The t i_mes at whic}: the landing site has this value of right ascension are given

i._£:

RAL - RALO i
 L(i) = + S' = -2, <_, 0, 2, (6)2So>

Kere, tLime is meas_m_ed in mean solar days and is related to _;idereaL time by the

factor c_ = 1.0027379 sidereal days per mean solar day. Time may be taken as

zero at any convenient Greenwich calendar date and RALo is the right ascension
of the landing site at that reference time. A convenient relation for the ref-

erence right ascension is

RALO = RAGo + ZL

where RAGe is the right ascension of Greenwich at the reference time and _L

is the east longitude of the landing site. Finally, the required total flight

time for any value of "i" is

T (i) : %(i) - TH (T)

Equati.on (:<) on!l/ specifies the times at which the landing site has the desired

inertial_ position_ which occ<_s once every sidereal day_ that is, once for each

value o±' "i." Only some of these times are of interest owing to obvious restric-

tions on the flight time front the Hoon to the Earth. Except for orbits that

leave tl_e Moon heading away from the Earth_ the maximl.m_ flight t'_me is given by

the trajectory for which the Hoom's position is at apogee. In this case the

orbital flight t i.me is

Rp + R_,!}s 2.-- ---5 days
TF : _ 2 bE

where

Rp = i,430 km : _afe entry vacuum perigee

RH = _.4_000 km = mean lunar distance

This estimate of the _:imra_ flight time of interest neglects the entry flight

time, which is comparat_'vely small. Altho_g!< it is theoret::ca!ip _ possible to

compute orbits of zero flight time, energy considerations place a pract:'cal lower

limit on flight times (cf. fig. 4(a)). The l'r:¢ts _sed in this st_rlj were taken

as 1.5 and 5 days. !n general, if the flight times of interest are in the range

Tmi n < TF < _max



then the values of i of interest in equation (6) are given by

imi n _<i _<imax (i an integer)

p01
inn x : l}[f Ie(TH + Tmax) -

RA L - RALo ]

2× J

The derivation of this result is given in appendix A. The function

simply truncates y to the next lower integer; for example, l_Yf(3.< ) = 3.

( )

l>ynami cs

The return trajectory must be separated into two phases: orbital and entry.

The required total flight time and geocentric angle of the return trajectory are

given by equations (4) and (7) and the complete solution is given by that combi-

nation of orbital motion and entry maneuver which matches both constraints; that

is; the combination which satisfies the equations

TF o - __TF + TF E : TF D (ga)

where the various quantities are

TF o orbital flight time, Moon to vacumm

perigee

TF E

ATF

_9

entry flight time_ atmosphere entry to

ian di ng

orbital flight time, atmosphere entry

to vacuum perigee

orbital true anomaly, Moon to vacuum

perigee

entry range angle

true anomaly of entry location

"_'_"-.Vacuum
  'gee

Sketch (a).- Entry phase parameters.

The quantities_ TF D and A_ D, are the desired values of flight time and

geocentric angle obtained from equations (7) and (4).

7



Entry phase.- The entry phase begins when the vehicle is at an altitude of

400,000 feet [6,500 kil) and terminates at landing. Vacuum perigee of the return

orbits was fixed at 6,430 km, the middle of the entry corridor, in order to

obtain suitable entry conditions, m With this value of vacu_ perigee the flight-

path angle at entry is very nearly fixed at -ii.0° for all trajectories returning

from the Moon _with flight times in the range of interest. F_rther, t_e true
anomaly, $9_ ion _ntry to vacmLm perigee is nearly fixed at 12.0 ° with a

corresponding orbital flight time_ TF, of 122 seconds.

A relation between entry flight time and entry range is necessary. Work on

entry from circular orbits (refs. 5 and _) has indicated a linear relation betweer

these two parameters, and an unpublished study which extends the work of refer-

ence o to entry from parabolic orbits indicates a satisfactory linear approxima-

tion of the relation between entry range and entry flight time. The data of this

unpublished study were obtained in both variable and fixed L/D skipping entry

flight paths for Apollo type vehicles, and provide, to within about one minute,

the following linear relation:

TFE = 0.00933 _ + 0.00254 (I0)

valid approximately for all entry trajectories of interest. In equation (i0)

TF E and _ are taken in days and radians_ respectively. The solution to the prob-
lem is relatively insensitive to any errors in the approximation to entry charac-

teristics given by equation (i0) because entry flight times are small compared to

the total flight time from the Moon; for example_ an entry range of i0,000 nauti-

cal miles requires about L3 minutes flight time. In the present work, upper and

lower limits were placed on entry range, namely, 1,000 and I0,000 nautical miles

or range angle limits of 16.6 ° to 16_J].2°. The possibility of establishing a

parking orbit after skip-out and the effects of lateral range control were not
considered.

Orbital flight time.- Flight time from the Moon to vacuum perigee as a

function of true anomaly is readily computed from the equations describing

Keplerian orbits (cf. fig. 4(b)). The form of these equations found convenient

for the computer program used in obtaining the numerical results of this paper is

given in appendix B.

Remarks on the solution of equations (9)'- Equations (9) must be solved

simultaneously and, because Kepler's equation for orbital flight time is transcen-

dental, an iterative procedure is required. One way to do this is to vary the

entry range angle, _, computing the true anomaly from (9b) in each case. The

orbital flight time and entry maneuver times are then found from equations (i0)

rF
(c#)+TFn(e)-_TF

TF"o

Sketch <b).

and (_J) to (B9). This is done until some value of

is found that satisfies equation (9a) also; that

is, it is necessary to find the intersection of the

two curves in sketch (b).

In programming the above process of solution

some caution is necessary. There are limits on the

true anomaly for orbits having a given value of

!_e solution is insensitive to choice of altitude within the entry corridor.

8



perigee radius and passing through some other required range_ in this case_ the

distance to the Moon. Values of true anomaly outside these limits cannot be

used in the equations of appendix B. The limits are:

cos-Z R<_IP__< 9_<

The lower value is the minimum possible true anomaly_ corresponding to an orbit

of infinite energy, and the upper limit eliminates consideration of orbits which

depart the Hoon heading away from the Earth and corresponds to a flight time of

%bout 5 days. These limits can be combined with equation (9a) to obtain corre-

sponding limits on the value of q) that may be used in the search for the solu-

tion once SE D has been calculated:

SE D _ , 12 o < @ < L_ D cos_ m R<_
o

- _ __ __ - + 12

In addition, limits on the entry range capability of the vehicle have been

_ss_umed_ which may be combined with the above limits to give

_0

16. o

= whichever is larger
@rain ±_D _ _. + 12 °

_F'2° _I

ioo

@max = _D cos -z
Rp"

_:, + 12 °

whichever is smaller

(11)

In the process of searching for a solution, the angle _ may be varied between

the limits given by equation (ii). Outside this region, either the entry range

{ngle would exceed the assumed vehicle capability, or the true anomaly would be

outside the region for which orbits returning from the Hoon are possible or have

Flight times less than 5 days.

A second consideration is that the existence of a solution (that is, the

sccurrence of an intersection as in sketch (b)) must first be checked before

_earching for a solution. As is evident in the sketch, a solution exists only if

the required flight time, TFD_ is bracketed by the flight times corresponding to

the limits in entry range angle given by equations (ii) above; that is, only if

TFo(±E D 9min + 12°) + TFE(_min) > TFD + aTF > TFo(/_FD - @max + 12°)

+ TFE(Pma x )

Once the values of p, @_ and TF are determined, the solution is defined

_nd any other parameter of interest can be generated, for example, entry posi-

tion, entry speed, eccentricity_ etc.

Except for details, the method of solution described above is common to

Dther problem areas in the lunar mission. To compute approximate trajectories

Launched from a specified site on the Earth to arrive at the Hoon_ the equations

pverning atmosphere entry are replaced by those describing a boost and parking



orbit phase. The problem of aborts to a specified landing site from midcourse
points on a Ituuar mission (ref. 4) .mayalso be investigated by similar methods.

RESULTSANDDISCUSSION

The method of solution described above was programmedfor use on a digital
computer and results were obtained for trajectories returning from the Moondur-
ing February 1966 to EdwardsAFB. The Moon's time history of position was taken
from the Naval Observatory ephemerides tapes. The trends obtained are determined
largely by the latitude of the landing site, rather than its longitude, and are
therefore typical of landing sites near 35° latitude.

For purposes of the following discussion, the time of leaving the Moon,TM,
is associated with the time of injection onto a return orbit. However, the event
associated with TM is, strictly speaking, undefined since the computations
neglected the presence of the Moon.

Times of Landing and Flight Time

The times of landing for lunar launches during the first half of February
1966 are given in figure 5. The landing times fall into rather narrow bands; the
lower line of each band is given by orbits with a landing azimuth of 5° from
North (nearly polar orbits), and the upper line by orbits having an easterly head-
ing at landing (minimuminclination orbits). The width of the bands varies from
3 to $ hours during the month, but could be extended to 12 hours in every case by
considering the complete range of landing azimuth from 0° to 180° • However, land-
ing at Edwards at azimuths above 90° will require entry ranges in excess of i0,00(
nautical miles for launches from the Moonover someportion of the month.

For a fixed time of departing from the Moonand a particular value of landin_
azimuth there maybe three or four discrete landing times. For example, the fol-
lowing landing times occt_ for a lunar launch on February 8 on minimuminclinatior
orbits:

TM = 0 hr 8 Feb.; AZL = 90°

Landing time Flight time

5.31 hr i0 Feb. 2.2211 days

5.24 hr ii Feb. 3.2184 days

5.18 hr 12 Feb. 4.2157 days

There are three minimum inclination orbits into which the vehicle may launch at

this time. The landing times correspond to the several times at which the landin{

lO



site occupies the correct inertial position, as in equation (6), and for _,rhich
the dynamics (eqs. (9)) can be satisfie(]. These times are therefore one sidereal
day apart and the corresponding fl_ght times differ by a sidereal day.

If the time of launching from the Moonis varied, there is very little
change in the time of landing for return orbits of the sameincl_nation, for
example:

AZL = 90 °

Lunar latmch time Landing time Flight time

0 hr 2 Feb. I(_.90 hr (_Feb. 4.7042 days

0 hr 3 Feb. 17.9_ hr 6 Feb. 3.74$5 days

0 hr 4 Feb. 19.0 hr 6 Feb. 2.7940 days

0 hr _ Feb. 20.13 hr J Feb. 1.$389 days

A change in landing time of 3-23 ho<u_s occurs for a delay in launch time of 3

days. Thus, any la_Jmch delay may be taken up almost entirely by a corresponding

reduction in flight time.

The source of this behavior is the slow angular motion of the _._oon compared

to the angular motion of the landing site.

sketch of the celestial sphere, sketch (c).

The orbital tracks of two orbits having the

same inclination are shown leaving the Moon

at two different times one day apart. The

angular motion of the _ioom in its orbit is

about 13° per day so that the _ioon takes a

full day to move from the _osition Idl to
o

M 2. The Earth, hot_ever, rotates 15 per
ho_ so that less than one hour is needed

for the landing site to move from Ll, its

reqvired inertial position when the _oon is

at M1, to L2. The net result is that the

landing time changes about !/30th as rap-

idly as the time of departing from the _oon.

This result can also be derived mathemati-

cally and a general formula is reported in

appendix C.

This can be recognized from the

North

/ ,rack

There is, therefore, no latu_ch-time

problem for departing from the Moon to Sketch (c).- Celestial sphere.

ret_n to a specified landing site and

launch can take place at any time provided the required variation in flight time

is acceptable. Figure _i_shows the flight time for launches from the Moon during

the first half of February into minim_ inclination orbits. Launch at any time

requires that flight time variations up to one day be acceptable, but it is pos-

sible to choose the one day period of variation arbitrarily (e.g., 2.5 to 3.5 day

orbits). In this case, if the planned !a_u_ch time required a 3.5-day orbit, then

any launch delay would be taken up by a corresponding reduction in flight time,

ii



u_t_'_, after a delay of one day, the flight time was reduced to 2.5 days. Durin@
this period, the corresponding landing time would remain almost fixed and the
vehicle would still ap'_ve at the l an_ing site at the sametime. Any further
delay in launch, however, would ret <rn the require_ flight time to S.5 days and
the corresponding landing time would changeby one day by passing to the next
c_u_vein figure _. In this way, it is possible to operate over the entire month
with a flight time variation of no more than one day.

If a si_gl_e val_e of flight time is required, it is possible to launch only
once each day. For example, if the required flight time is three days, then
]aunc!'_can take place only at about 4 a.m., Feb. 3, k, 5_ etc., for minimum
inclination ret_n orbits. If it is necessary that the launch occur whenthe
Moonis in view of someparticular station on Earth, then launch would be
_'estricted to a short period of the day and the return flight time would be
speci.i'i_edfrom figure _:.

Over the period o£ a month the possible landing times occur during a short
period once each day, so that a requirement that the vehicle ]_andat a particula_
time of day wi_!! restrict the time of the month during which retouch :from the Moo_
may take place. The time of day at landing for the month of February is given ir
fig_'e 7. Curves for minimumand near-polar inclination are given; intermediate
inclinations give intermediate c<u_vesin the shadedarea. For example, if it is
required to land at "_a.m. on a minim_rl inclination orbit, then the time of luna_
launch is restricted to noon on Feb. 21.

The variation of flight time with landing azimuth is given in figure $ for
several launch times dtu_ing the month. Alternatively, the difference in flight
time betweenminim,a_uinclination and near-polar orbits maybe taken directly fret
rig<u'e 7 as the difference in times of landing, which varies from 3 to 8 hours
d<uutngthe month. In general, the required flight time increases with landing
azimuth; that is, it is less for polar orbits of zero landing azimuth than for
miniru_n inclination orbits.

The entry speed varies with the flight time and the distance to the Moon.
Figui_e 4(a) gives the vacuumperigee speed versus flight time for the minimuman<
maximumvalues of the lunar distance. For any given distance to the Moon, lower
:I'light times correspond to higher energy trajectories. Polar return orbits have
sligi_t!y greater energies than minimuminclination orbits and will therefore haw
slightly higher speeds both at entry and at departure from the Hoon.

The higher speeds required on polar orbits at departure from the Hoon are oz
someinterest since they will occasion an increase in fuel requirements for
i_ljection into the return orbit. To illustrate the size of the penalty involved
someprecision trajectories were obtained which depart from an altitude of 266 Rd
above the Moonat a point behind the Moonon the Earth-Moon line. The speed witl
respect to ti_e Moonat depart<me for various inclination angles is given in the
right-hand colmim of the following table:

12



TM = 12 hr; i February 1966

I_ TF, Vp, VM (Lunar injection
de_ days km/sec speed)_ km/sec
34.9 _ 11.0834 2.5296
39.5 2.402 11.0913 2.5678
51.2 2.310 11.0958 2.6146
65.0 2.242 11.1063 2.6629
85.0 2.174 11.1141 2.7229

The nearly polar orbit requires a departure speed 193-3 m/sec greater than
that of the minimuminclination orbit. The differences in flight time and vacuum
perigee speed are 8 hours and 30.7 m/sec, respectively. However, only a part of
the difference in departure speed is due to the higher energy of the polar orbit.
The major part is due to kinematic considerations. Trajectories with the same
flight time have the sameenergy with respect to the Earth whatever the inclina-
tion. Their energy with respect to the Moonvaries, however, with inclination
because of the motion of the Moonwith respect to the Earth. Vehicles which
return in the Moon's orbital plane maytake advantage of the Moon's velocity in
order to obtain the required energy with respect to the Earth, but vehicles
returning in orbits that are polar to the Moon's orbital plane must remove this
componentof velocity. The result is that amongorbits with respect to the Earth
that have the sameenergy, the polar orbits require a higher velocity with respect
to the Moonand, consequently_ greater maneuver fuel costs in the vicinity of the
Moonthan orbits that lie closer to the Moon's orbital plane.

Entry RangeRequirements

The entry range requirements for minim_ and near-polar inclinations are
given in figures 9(a) and 9(b) for the entire month of February. Each curve in
these figures corresponds to one of the fixed azimuth lines of figure 5 and there-
fore to a very nearly fixed time of landing. Flight times of 4 days and 2 days
are associated with the left and right end points, respectively, of each curve in
the figures.

Both figures show a general monthly variation in the required entry range
which parallels the variation in lunar declination; that is; the entry range
decreases during the first half of the month whenthe Moon's declination decreases
(cf. fig. 2(b)), and increases during the second half of the month with the lunar
declination. This behavior stems from the geometry of the problem; the total
geocentric angle, A{, from Moonto landing site increases with the declination of
the Moon. In figure 2(d) in the region of possible lunar declinations, from
-25.5 ° to +28.5°, it is seen that the angle, A_ increases with the declination
for every value of landing azimuth. The total geocentric angle is madeup of the
orbital true anomaly and the entry range angle, as in equation (9b);

_D = @_ 12° +

Consider next trajectories of fixed flight time and, hence, of fixed true anomaly.
In this case, as DM increases the angle, A_, increases, and, by the above
equation, the entry range angle, _, must also increase.
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Thi._ a"gkunent is not entirely correct since_ for a fixed landing azimuth_

the retluu_ Slight time and corresponding true anomal_ _ have a daily variation as
in figk_re _"i. But_ since it is possible %o have a fixed value of flight time once

each day_ the argt_r_ent is correct from day to day and therefore a general trend

must occL_r in which the required entry range varies with the lunar declination as
observed in fig_u'es 9(a) and 9(b).

The variation of entry range with lunar declination also depends on the

latitude of tke landing site. T}_e trend noted above is correct for landing sites

in the northern i_emisphere above the maximum declination of the Moon and therefore

applies to typical sites in the Southwest United States. For landing sites in

the southern hemisphere below the minimum declination of the Moon the trend is

opposit_e; that is_ the angle, _, decreases with increasing lunar declination and

the entry range is less at northerly declinations of the Moon than at southerly

declinations. Such a case is illustrated in figure 10(a) which gives the entry

range requirements for minim_un inclination ret_ucns to Woomera, Australia (-31.4 °
f f O

fat., i]_o.9 long.).

Figr_'e 9(a) indicates that a ret_m_n to Edwards AFB at any time of the month

with mi.nimtu_.linclination orbits requires entry ranges from 3,000 to 9,_00 nau-

tical miles. If the entry range capability of the vehicle is much less than

9,500 nautical miles there are several alternatives. The return from the Moon

could be restricted to that portion of the month for which the entry range

requirements are within the capability of the vehicle; in the case of landing

sites in the Southwest United States_ this would correspond to times when the

Moon is at negative declinations. However, operation over the entire month can

be restored by having two landing sites; a second site at southern latitudes

would have low entry range requirements for positive lunar declinations

(fig. 10(a)). A second landing site could also be placed part way along the

entry track for minimum inclination returns to Edwards AFB. Such a case is

illustrated in figure 10(b) for landings at 20.2 ° latitude, 159.8 ° east longitude,

in the area west of Hawaii about 3_200 nautical miles from Edwards. The entry

range requirements are about 3_000 miles less than for Edwards but there is a

portion of the month when the Moon is near or below -20.2 ° latitude during which

no ret_u_n solutions occur'.

It is evident that the use of a fixed landing site requires a varying entry

range for operations at any time of the month. The use of two or more fixed

landing sites allows the amount of variation to be reduced. If this procedure is

extended to the limit, that is_ if a mobile landing area is used, then the

required entry range can be held fixed. However_ an investigation of this alter-

native method of landing area restriction is beyond the scope of the present work.

Another alternative is to use polar return trajectories for which the entry

range requirements are substantially less than those for minimum inclination

return orbits. The requirements for nearly polar return to Edwards are given in

figure 9(b), which indicates an entry range capability of 1,500 to 5,000 nautical

miles is necessary_ or_ roughly_ half of the entry range capability required for

minimum inclination orbits, for example,

14



J , , ,

Time of launch

0 hr 3 Feb.

0 hr 9 Feb.

0 hr !_S Feb.

Declination

Inclination

34.9 °

85.9 °

of the Moon
, , , , J

26. i°

, , . , , ,

o

1.0

o

-26.2 ,oo34..
85. '? o

Entry range_
nautical miles

9500

55oo

6550

3275

35oo
1_::,_0

A general trend is illustrated by the above table; entry range requirements

increase with increasing landing azimuth.

determined from sketch (d) which shows the

superlunar point on the celestial sphere

together with the tracks of return trajec-

tories having various landing azimuths
o o

from 0 to i$0 • The superlunar point is

180 ° from the direction of the Moon at the

time of departure and has a declination of

-I_:. Once the time of departure from the

Hoon is specified, the superlunar point is

fixed inertially and all the return tra-

jectories must pass through it. The land-

ing site track is shown in the sketch and

its intersections with the tracks of the

various return orbits locate the landing

site inertially at the time of landing.

It is evident from this sketch that the

total geocentric angle from the Moon to

landing increases with landing azimuth_

from a value of _ + DH + DL to 2× + _4-
o

DL as landing azimuth varies from 0 to

180 °. The total change is _ - 2DL. If

the return flight time and orbital true

The reasons for this behavior can be

z

/ Lonc[ing //

/'_/'.site.- / AZ._.L:/35o

X

Sketch (d).- Effects of landing azimut_

anomaly were fixed_ the increase in total geocentric angle with landing azimuth

would require an equal increase in entry range angle by equation (9a).

Although the return flight time is not fixed_ it can be shown that the change

in true anomaly is comparatively small, with the result that the intrease in

total geocentric angle does_ in fact_ require an almost equal increase in entry

range angle. It is evident from the sketch that the landing site rotates halfway
-" O _ O

around the celestial sphere ao the landing azimuth is increased from 0 to I 0

there_,oze increase by half a sidereal day with anand the time of landing must _ _

equal increase in return flight time. This increase in flight time is effect@d

almost entirely by an increase in orbital true anomaly, but an increaseoin flight

time of half a day only requires an increase in true anomaly of about 5 for

flight times in the range of interest (cf. fig. 4(b)).
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Two points are noted from this discussion; first_ the required entry range

increases with landing azimuth; it is a minimum for polar orbits with a due-north

heading at landing and a maximum for polar orbits with a due-south heading at

landing. In the case of landings at Edwards AFB_ the necessary entry range capa-

bility for operations over the entire month is under i0_000 nautical miles for

landings at azimuths up to 90°_ that is_ for approaches from the southwest. For

approaches from the northwest the entry range requirements will exceed i0,000

nautical miles over some portion of the month.

Second_ the rettm_n flight time increases locally with landing azimuth_ being

half a day longer for polar orbits with a due-south heading at landing than for

orbits with a due-north heading at landing.

The variation of entry range and flight time with la_ding azimuth also

depends on the landing site latitude. The trends noted in the preceding discus-

sion apply to landing sites at latitudes greater than the declination of the

Moon. In the case of Edwards AFB and other sites in the Southwest United States

above the maximum declination of the Moon> these trends occ_ar at all times of the

month. The opposite trends would obtain for landing sites in the southern hemi-

sphere at latitudes below the minimum declination of the Moon.

The longitude and latitude of the atmosphere entry points for all the

sol_ions departing the Moon at 0 hr, 3 Feb. are given in figure ll(a). There

are three lines of solutions corresponding to landing times one day apart. Entry

locations for departures at several times of the month are given in figmre ll(b)

where only the solutions having 2.5 to 3.5 day flight times are given. The two

constant inclination lines in this figure give the locus of entry points for min-

im_ml and polar inclinations. These lines are very nearly the track of the

vehicle over the Earth during the final portion of the rettu_n trajectory for all

orbits having the corresponding inclinations.

CONCLUSIONS

An analysis has been given for computing trajectories returning to a

specified landing site_ assuming a two-body description of orbital motion and an

approximate flight time - entry range relation for the entry phase. The method

of sol_ion was programmed for an IBM 7090 digital computer and general results

covering ret'_rns from the Moon to Edwards AFB for the month of February 1966 were

obtained. Generally_ the trends reported here will be the same for other time

periods and landing sites in the Southwest United States.

The trends indicated are as follows:

i. For a specified orbital inclination angle the times of landing are

restricted to a short period once each day.

2. The return flight time is a function of the time of leaving the Moon.

For a specified orbital inclination angle_ launch into an orbit with a specified

flight time can take place once a day. Launch at any time requires a one-day

variation in flight time.
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3. Return polar orbits are of substantially higher energy with respect to

the Moon than minimum inclination orbits.

4. It is possible to return from the Moon to a specified landing site at

any time with any desired inclination angle greater than the minimum possible

value_ provided the necessary entry range capabJ!ity is available.

5. Entry range requirements vary over the month, showing a close relation

to the lunar declination. For retouch to Edwards AFB, the entry range require-

ments are 3,000 to 9,500 nautical miles for minimum inclination orbits and 1,500

to 5,000 nautical miles for polar orbits.

Ames Research Center

National Aeronautics and Space A_Sministration

Moffett Field, Calif., Dec. i0, 1962
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APPENDIX A

LANDING TI_S OF INTEREST

If a trajectory is to leave the Hoon at TM and the flight times of

_nterest are limited to the range of values

Tmi n < TF < Tma x (A1)

and if the times at which the landing site occupies the correct inertia] position

are given by equation (6) of the text as

RAL - RAL0 i

TL(i) = 2_ + _, i = . -2, -l, 0, l, 2, (6)

then it is necessary to find the values of i which satisfy the flight time

limits of (AI).

The flight times corresponding to the required landing times are:

 F(i): TL(i)- TH (7)

Consider the following sketch of the time scale (mean solar time), showing

the reference origin and the points TM and TM + T. Between PO and TM + T there

io-_it _J_

TM TM+r

RAL-RALo

2,rw :Po

_ \ J _

T- -t-
o po

Sketch (e).- Time scale.

are (io - I) complete

sidereal days (or

(io - i)/_ mean solar

days) plus a fraction
of another sidereal

day. The number of

sidereal days from

PO to TM + T can be
computed from

tsidereal : e(T M + T - PO) (A2)

and hence the integral number of sidereal days from PO to TM + T is

where

text.

of interest corresponds to the lowest value of TL(i ) which is greater than

TM + Tmin; whence

imi n = INT [_(T M + Tmi n) RAL2_I.RAL0]
- _ + i

io i = INT [_°(TM + T- PO)] (i3)

INT(y) truncates y to the next lower integer value as explained in the

Finally, the minimum value of i which gives a flight time in the range

(A4)



Similarly_ the maximum value of
interest corresponds to the highest value of TL(i) which is less than

T H + Tma x; or

ima x = !NT _(TH + Tmin) - 2_ J

The landing times of interest are those given by equation (6) with values of

in the range.

i which gives a flight time in the range of

imin ! i _ ima x

(A5)

(A6)

i an integer
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APPENDIXB

ORBITALFLIGHTTIME FORMULAS

A subroutine which computes orbital flight time was necessary in the
computer program for point-return trajectories. The most convenient subroutine
is one that accepts values of perigee radius; departure point radius; and true
anomaly_ and computesthe orbital flight time from the departure point to vacuum
perigee. The perigee radius for the return trajectories is fixed at 6_430 km
and the departure point radius is, for trajectories returning from the Moon; the
distance to the Moon. This distance varies from about 356_000km to 407_000km
as shownin figure 4(c) for February 1966. Although the usual flight time formu-
las can always be used_ a more convenient set_ as derived below_ was used with
the computer program.

The solution orbit will be one of the possible orbits which have the
required value of Rp and pass through a point of radius_ RM. For Keplerian
orbits

RM= i + e cos OM

P

_P i + e

Define the parameter

(B1)

Rp

0 = RM (B2)

This parameter has a value from 0.0158 to 0.0180 for orbits leaving the Moon. It

follows, after dividing the equations of (BI), that all the possible orbits are
described in the formula

i + e cos @M

D= I+ e

or

i -p
e =

0 - cos @M

Some points of interest given by equation (B3) are:

i) minimum eccentricity

i - £ at _M = _
emin = i + p

ii) parabolic orbits

e = 1.0

iii) minimum true anomaly

at @M : c°s-l(20 - i) _ Yl

e --_ oo at @H = c°s-!(0) =- Ym

(B3)

(B4)
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The angles '_'z and Ys are taken between zero and ×. The po'ints given in (Bh)
give the following restr-_ctions on so_ieof the orbital parameters for orbits

17_ Opassing try ugh RH and hav::ng the _'equired val_le of Rp:

l-O<e<_
l+p--

Ys _< 8H < Yz hyperbolic orb'its (e > I)

0_,,'I= Yz

'_ < < 2_: - "_:_n @H

parabolic orbits (e = I)

ellipt'ic orb'its (e < i)

(Bs)

no orb-its possible

Restrictions on other orbital parameters can be der:[ved from (BS) and other

orbfta! relations. The restrict'ions of (B5) are illustrated in the sketch below

and a plot of these same parameters !.s given in figRre 4(b).

4--

g
u

W

o

No

orbit

--I.0
--I -P

I+P

'I'2 ¢,

True onomoly

Ellipticol

z

Sketch (f).

The eccentric or hyperbolic anomaly at

the true anomaly.

cosh F for
i

cos E for

O<F,E_

TF

Rp+R 31 --

- '

qJl _"

True onomoly

/
/

RM can be computed as a function of

hyperbolic orbits

elliptic orbits

(S_.i)
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Althoug}t equation (B<) is correct for the entire range of el!ipt_c orb'ts

(YI < @ < 2× - Y,), the range of true anomaly £iscussed here is limited to values

below _: since higher values correspond to orbits on wh'ich the vehicle would

leave the Hoon headed awal< from the Earth.

A £ormula for fl!ght time can be g:iven :in terms of any three independent

orbital parameters by substitutions of the appropriate orbital relations -into

Kepl.er's equation for flight time. In the present case_ the desired result is:

(sT)

where i] is computed from the following equations:

E(1- p cos E) - (7_- O) sine

(! - cos E) a/s

F(I - 0 cosh F) - (! -0) sinh F

(cosh F - i)s/s

elliptic region

b_perbolic region

(BS)

For parabolic orbits_ where e = i and E, F : O, both expressions for _ have a

s_ngularity. A nonsingular expression for @ in the region near the parabolic

condition is readily obtained by expansion of the trigonometric functions to give

a series expression for @_

OO

i(i + 20) + 22 1 +(lnl(n++3):l)p xn

: j_ n:_ (Bg)

2 l-
oo 3/2

n

+ 2 x _

n=< (ln + l)j

El @ > Yl

x= ].F2 _-_l

For computation_ (Bg) may be used for all orbits provided a sufficient number of

terms :is taken in the series to give the required accuracy.

In particular, for parabolic orbits, equations (B4), (B7), and (Bg.) give

- 3 (R H - Rp)

The flight time subroutine accepts values of Rp_ RM_ and @ and. uses
equations (BP) and (BJ) with (B7), (BS), or (Bg) to compute the flight time.
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APPENDIXC

VARIATIONOFLANDINGTI_,EWITHTIMEOFDEPARTINGTHEMOON

FORFIXEDINCLINATION

From equations (_) and (6) of the text it follows that

dTL i {dRAH+ d_L d%{%
dTM 2_e \dT M dTM dTM/

(Cl)

where the derivatives are to be computed for fixed landing azimuth and, hence,

fixed inclination. Equations (2) and (3) of the text may be used to derive:

dYL
= 0

dTM

dYM cos I dTM
- m

dTM c°s2 DM L cos 2 1

J cos 2 DH

(c2)

where m = ±l, depending on which of two possible heading angles at the Hoon is

to be used.

m = +i for 0 < AZH < _/2

m : -i for _/2 < AZM <

The Moon in its orbit is considered next; the Moon's orbit is assumed to lie in a

single plane and the general formulas of equations (i) of the text are applied.

Noting that the right ascension of the Moon_ RAH, is related to the equatorial

angle of the Moon from its nearest ascending line of nodes_ Y_gi_ by the addition

of a constant, then by analogy to the second equation of (C2) above,

dRA H dY}%_ cos IM ! d_4
- n (_3)

cos 2 DM / 1 cos 2 IM dTM

j-
COS 2 D M

dT M dT H

n = +i for DM increasing

n : -I for DM decreasing

IM : inclination of Moon's orbital plane
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It is convenient to introduce the orbital angular velocity of the Moon, OM,

in the above expressions in order to simplify the results, and because _M is

nearly constant. It varies about 2°/day around a mean value of approximately

13°/day over the lunar month. The following relations among, the angles describing

the Moon's orbit occur from spherical trigonometry (eqs. (id) and (le) of the

text ) :

sin I_ : sin !M sin _M

cos gM = cos Y},2_Icos DM (c!_)

where 0M is measu2_ed from an ascending node. Together with equations (i) these
provide the result

dDM / c°s£ I M

dT--i: n ,/ 1• cos2 DI,_
(c5

The rate of change of the Moon's declination is a maximum (n_ M sin IM) when the

Moon is at a node, and is zero at the extreme declinations, _+IM. Equation (C3)
becomes

dRA M cos IM •
- OM ( C<_

dTM cos2 DI,4

This has a minimtzm value at a node where (RAM = _M cos IM) and a maximum value at

the extreme declinations (RAM = 0M sec If,i).

Finally, the combination of (C2), (C5), and (C{_) in equation (CI) g-yes the
result

d_L

dTM j, os 1 (c7)

where m and n are _+! according to the circ_._stances described above.

Equation (C7) may be vmitten in the following alternative form_ noting (C6):

Since 2_ is the angular velocity of the Earth then (CS) gives the rate of

change of landing time with depart___e time as the ratio of the equatorial angular

velocity of the Moon to the angular velocity of the Earth times the modifying
factor in the brackets.

t_L_



In particular, for polar orbits (I _ _/2)

dT L RAM

dTM 2_

or, stated differently,

dRA L dRA M

dTM dTM

This last is an expected result from simple physical considerations.

For orbits having the inclination of the Moon's orbital plane (I = IM),

equation (C_) becomes

dT L RAM

for DM _ IM dTM - 2_,J (i - ran)

more generally, for

dTL i aM
fori_l : IM _:

dTM cos IM 2_

IM < I < _/2 then

o < _ < 2\2_/

which has a maximum value of about 0.06. This is the result alrea<v expected

from the physical considerations given in the text; if the inclination of the

return orbit is fixed, the landing time changes very slowly with time of departure

from the Moon.
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